Uncertainty Quantification in an IGCC Process Using Polynomial Chaos Expansions

Department of Chemical Engineering, MIT

The Future of Coal Power Plants

- Coal provides half of US electricity
- 'Clean' coal Integrated gasification combined cycle
- Coal → syngas for higher efficiency, CO₂ sequestration

Make long term policy & investment decisions

Risk = Uncertainty x consequence

Must quantify uncertainties, especially in complex systems

Outline

- Uncertainty Quantification in Chemical Systems
- Tools for Uncertainty Quantification
 - Polynomial Chaos Expansions
- Illustrative Examples Batch reactor
- Coal Conversion Study Apply to process design
- Future Applications

Key Point: The way to get orders of magnitude reduction in solution time is to change the problem representation – treat uncertainty at the beginning, not at the end.

Uncertainty Quantification in Chemical Systems

- Characterize the input uncertainty
- What impact do uncertain inputs have on the outputs?

PDF = probability density function

Not all inputs are Gaussian!

What is the Goal of Uncertainty Quantification?

- Current Methods limitations
 - Perturbation Method local approximation
 - Moment Methods linearized systems
 - Monte Carlo expensive
- Desired properties of uncertainty methods
 - Accurate
 - Computationally efficient
 - Decompose output uncertainty ~ Global Sensitivities
 - Apply to nonlinear, black box models
 - Non Gaussian inputs
 - Approximate the full output PDF

Approximation Functions with Expansions

Fourier Series approximation of functions

$$y(x) \approx \hat{y}(x) = a_0 + \sum_{n=1}^{N} a_n \sin(nx) + b_n \cos(nx)$$

Coefficients

 Replace an unknown complex function w/ combination of simple known functions and unknown coefficients

Approximating a Random Variable

Direct Representation of Random Variables (RV)

 How to choose the best Basis Random Variables and functionals?

Choosing the Basis and Functionals

Recall desired goals:

1. Decompose output uncertainties

How – ensure inputs are independent

Representation – Orthogonal Basis Random Variables

Efficient computation of PDF/ statistics
How – Solve multidimensional integrals

ex:
$$E[Y(\xi_1 \dots \xi_n)] = \int_{\xi_1} \dots \int_{\xi_n} Y(\xi_1 \dots \xi_n) f_{\xi_1 \dots \xi_n} d\xi_1 \dots \xi_n$$

Representation – Orthogonal polynomial functionals

ex:
$$E\left[Y\left(\xi_{1}\ldots\xi_{n}\right)\right] = \prod_{i=1}^{n} \left[\int_{\xi_{i}}Y_{i}\left(\xi_{1}\right)f_{\xi_{i}}d\xi_{i}\right]$$

Expansion of a Known Random Variable

UQ Example – Batch Reactor

$$\frac{dY}{dt} = -X(\omega)Y \qquad Y(t=0) = 1 \qquad \begin{array}{c} \text{Uncertain kinetic parameter} \\ X \sim \log \left(1, \frac{1}{2}\right) \end{array}$$

$$Y(t,\omega) = \mathcal{A}\left[X(\omega)\right] = \exp\left(-X(\omega)t\right) \qquad \text{fix } t = \frac{1}{20}$$

5 model evaluations

Efficient Quantification of Uncertainty

12 | November 12, 2009

Polynomial Chaos Expansions – Summary

- Recap
 - Widely applicable tool for uncertainty quantification
 - Orders of magnitude faster than Monte Carlo
 - Easily identify significant input uncertainties
- Assumptions/ Issues
 - Assume the approximate functional form of the output density
 - Requires well behaved models
 - Uses concepts from numerical quadrature
 - Convergence rate

Evaluating competing clean coal technologies

- Integrated gasification combined cycle modeled in ASPEN Plus
- Quantify uncertainties
 - Identify parameters that require more study
 - Assess impact on design

Characterize Uncertain Input Parameters

#	Unit	Parameter	Distribution	Mean	Var	Range	σ/μ			
1		Moisture	Normal	11.12	0.56		A .067			
2	21 Dara	motore					0.068			
3	21 Parameters						0.026	0		
4	Feedstock		Normal	5.06	0.25		0.099	Coal		
5			Significant uncertainties				0.188	Composition		
6							0.133	Parameters		
7							nts			
8	Gasification						0.019			
9							0.055			
10							0.40			
11	Gas turbine						0.39			
12							0.39			
13					Non Gaussian Distributions					
14										
15	Steam turbine					0.05	\cap \land \cap			
16						0.0	uniform/triangle PDFs			
17						0.03		gree		
18						0.03	mean			
19						0.04				
20	Air Separation					0.07				
21						0.13				
22						0.07				
23	<u> </u>					0.1		J		
24						0.1	range			
25	Compression					0.1				
26						0.1				

Identify Critical Process Parameters

- Only six parameters have significant impact
- Feedstock is the major factor

Plant Performance Metrics

Nearly Gaussian, with significant uncertainties

Results

- Model is roughly linear in the significant parameter (Coal composition)
- Significant uncertainty in the outputs warrants further study of coal composition, matching of process conditions to coal source.
- Efficiency 48 model evaluations, ~O(2) fewer than Monte Carlo
- Future work integrate rigorous uncertainty quantification with process design

Application Areas

- Current uses
 - Computational Fluid Dynamics
 - Combustion
 - Subsurface flow
- Potential Chemical Engineering areas
 - Process Design
 - Experimental Design
 - Economic Analysis
 - Model Predictive Control
 - Anything related to Stochastic Optimization

Acknowledgements

- Eni S.p.A.
- BP
- McRae Group

References

- 1. Wiener, N. (1938). "The Homogeneous Chaos." <u>American</u> Journal of Mathematics 60(4): 897-936.
- 2. Ghanem, R. and P. Spanos (1991). <u>Stochastic Finite</u> <u>Elements: A Spectral Approach, Springer-Verlag.</u>
- M. A. Tatang, W. Pan, R. G. Prinn, and G. J. McRae. An Efficient Method for Parametric Uncertainty Analysis of Numerical Geophysical Models. Journal of Geophysical Research, 102 (1997), pp. 21916- 21924.
- Xiu, D. (2009). "Fast numerical methods for stochastic computations: A review." <u>Commun. Comput. Phys. 5(2-4):</u> <u>242 272.</u>
- 5. Cost and Performance Baseline for Fossil Energy Plant, Vol. 1, DOE/NETL – 2007/1281, (2007).

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Department of Chemical Engineering

Ken Hu PhD Candidate Department of Chemical Engineering Massachusetts Institute of Technology kthu@mit.edu

